Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756513

RESUMO

Carcasses (n = 115) from steers resulting from the mating of four Limousin × Angus sires heterozygous for the F94L myostatin mutation to Jersey, Jersey × Holstein, and Holstein dams were utilized to evaluate the effects of one copy of the F94L allele on strip loin dimensionality, Warner-Bratzler shear force and slice shear force, and sensory panel ratings. In phase I of a two-phase study, 57 carcasses from two sires were utilized to obtain samples of longissimus dorsi (LD), psoas major (PM), gluteus medsius (GM), semitendinosus (ST), serratus ventralis, triceps brachii, and biceps femori muscles, which were vacuum packaged, aged until 10 d postmortem, and frozen. Frozen strip loins were cut into 14, 2.5-cm-thick steaks each, and individual strip loin steaks were imaged at a fixed height on a gridded background and processed through image analysis software. In phase II, to obtain a greater power of test for LD palatability attributes, 58 additional carcasses from three sires were utilized to obtain LD samples only for sensory panel and shear force analysis. Cooked steak sensory attributes evaluated by trained panelists were tenderness, juiciness, beef flavor, browned flavor, roasted flavor, umami flavor, metallic flavor, fat-like flavor, buttery flavor, sour flavor, oxidized flavor, and liver-like flavor. In strip loin steaks from carcasses with one F94L allele, LD muscle area was larger in steaks 4, 5, 7, 8, and 9, and steaks 1, 6, 7, and 9 were less angular than those from carcasses with no F94L allele (P < 0.05). Of the seven muscles observed, there were no shear force differences between F94L genotypes (P > 0.20). F94L genotype did not affect sensory panel ratings of LD and GM steaks (P > 0.07). Cooked ST steaks from carcasses with one F94L rated lower in fat-like flavor compared to those from carcasses with no F94L allele (P = 0.035). Cooked PM steaks from carcasses with one F94L allele rated lower in juiciness, fat-like flavor, buttery flavor, and umami flavor compared to those with no copies of the F94L (P < 0.04). In summary, one copy of the F94L allele utilized in beef × dairy cross steers improved strip loin steak dimensionality, did not affect cooked steak tenderness across seven muscles, and decreased fat-associated flavors in the PM and ST. The use of F94L homozygous terminal beef sires would be an easily implemented strategy for dairy producers to improve steak portion size and shape in carcasses from nonreplacement calves.


In beef × dairy steers, one copy of the F94L allele decreased steak angularity in the strip loin and fat-associated flavor attributes in tenderloin steaks, while tenderness was not impacted. Reduced strip loin steak angularity addresses inherent deficiencies in dairy and dairy-cross carcasses; thus, the F94L allele could improve the consumer and chef acceptability of beef × dairy strip loin steaks. Using a beef sire homozygous for F94L myostatin in a beef-on-dairy system would ensure that all resulting progenies have exactly one copy of the F94L allele, meaning that this genetic strategy could be rapidly implemented in the beef-on-dairy industry segment.


Assuntos
Carne , Miostatina , Bovinos/genética , Animais , Culinária , Manipulação de Alimentos/métodos , Músculo Esquelético , Mutação
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756643

RESUMO

Producer live performance data and carcasses from steers (n = 116) resulting from the mating of four Limousin/Angus sires heterozygous for the F94L myostatin mutation to Jersey/Holstein dams were utilized to evaluate the effects of one copy of the F94L allele on live performance, carcass traits and USDA grades, and boxed beef and retail yields. Slaughter data were collected at time of harvest and carcass data were collected 48 hours postmortem. One side from each of the 58 carcasses was fabricated into boxed beef and retail cuts by experienced lab personnel 5-8 d postmortem. One copy of the F94L allele did not affect gestation length, birth weight, percentage of unassisted births, feedlot average daily gain, live weight at harvest, hot carcass weight, or dressing percentage (P > 0.05). Muscle fiber analysis indicated that the increase in muscularity by the F94L allele in the semitendinosus and longissimus was likely due to hyperplasia as there was a 19% increase in the quantity of myosin heavy chain type IIA and IIX fibers in the semitendinosus (P < 0.05) with no effect on muscle fiber size (P > 0.05). Carcasses from steers with one F94L allele had larger ribeye areas (99.2 vs. 92.3 sq.cm.), greater ribeye width:length ratios (0.498 vs. 0.479), lower USDA yield grades (2.21 vs. 2.66), and lower marbling scores (438 vs. 480) (P < 0.05). Additionally, for boxed beef yields, one F94L allele, vs. zero F94L alleles, increased (P < 0.05) 85/15 trimmings (+0.59%), top round (+0.28%), strip loin (+0.12%), eye round (+0.11%), tenderloin (+0.07%), boneless foreshank (+0.07%), cap/wedge (+0.06%), and tri-tip (+0.04%). Overall, carcasses from steers with one F94L allele had a greater boxed beef yield (+1.06%), boxed beef plus 85/15 trimmings yield (+1.65%), and total retail cuts plus ground beef 85/15 yield (+1.78%) than carcasses from steers with zero F94L alleles (P < 0.05). One copy of the F94L allele utilized in beef-on-dairy breeding system had no significant impact on live performance traits but resulted in lower marbling scores and increased muscularity as evidenced through larger, more beef-shaped ribeyes, lower USDA yield grades, and greater carcass cutout yields (both boxed beef and retail yields).


In a beef-on-dairy system, one copy of the F94L myostatin allele caused increased muscling, resulting in larger, more beef-shaped ribeyes, more desirable yield grades, and greater boxed beef and retail yields, all of which address inherent deficiencies in dairy and dairy-cross carcasses. These improvements were realized with no negative effects on calving ease or live performance. The F94L did cause a significant and meaningful reduction in marbling score; therefore, marbling ability should be paramount in sire selection if F94L sires are utilized. Using a beef sire homozygous for F94L myostatin in a beef-on-dairy system would ensure that all resulting progenies have exactly one copy of the F94L allele, meaning that this genetic tool could be rapidly implemented in the beef-on-dairy industry segment. When selecting sires for beef-on-dairy programs, accurate EPDs should remain the primary evaluation tool as the F94L effects are reflected in accurate EPDs; however, using a sire homozygous for F94L (2 or 0 copies) should result in more consistent progeny.


Assuntos
Composição Corporal , Carne , Bovinos/genética , Animais , Composição Corporal/genética , Miostatina/genética , Mutação , Fibras Musculares Esqueléticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...